Código Python elegante para partición de enteros [cerrado]

Resuelto Hemesh Singh asked hace 12 años • 11 respuestas

Intenté escribir código para resolver el problema estándar de partición entera ( Wikipedia ). El código que escribí fue un desastre. Necesito una solución elegante para resolver el problema porque quiero mejorar mi estilo de codificación. Esta no es una pregunta de tarea.

Hemesh Singh avatar Apr 06 '12 03:04 Hemesh Singh
Aceptado

Una función más pequeña y más rápida que la de Nolen:

def partitions(n, I=1):
    yield (n,)
    for i in range(I, n//2 + 1):
        for p in partitions(n-i, i):
            yield (i,) + p

Comparémoslos:

In [10]: %timeit -n 10 r0 = nolen(20)
1.37 s ± 28.7 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [11]: %timeit -n 10 r1 = list(partitions(20))
979 µs ± 82.9 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [13]: sorted(map(sorted, r0)) == sorted(map(sorted, r1))
Out[14]: True

Parece que es 1370 veces más rápido para n = 20.

De todos modos, todavía está lejos de accel_asc:

def accel_asc(n):
    a = [0 for i in range(n + 1)]
    k = 1
    y = n - 1
    while k != 0:
        x = a[k - 1] + 1
        k -= 1
        while 2 * x <= y:
            a[k] = x
            y -= x
            k += 1
        l = k + 1
        while x <= y:
            a[k] = x
            a[l] = y
            yield a[:k + 2]
            x += 1
            y -= 1
        a[k] = x + y
        y = x + y - 1
        yield a[:k + 1]

El mío no sólo es más lento, sino que requiere mucha más memoria (pero aparentemente es mucho más fácil de recordar):

In [18]: %timeit -n 5 r2 = list(accel_asc(50))
114 ms ± 1.04 ms per loop (mean ± std. dev. of 7 runs, 5 loops each)

In [19]: %timeit -n 5 r3 = list(partitions(50))
527 ms ± 8.86 ms per loop (mean ± std. dev. of 7 runs, 5 loops each)

In [24]: sorted(map(sorted, r2)) == sorted(map(sorted, r3))
Out[24]: True

Puede encontrar otras versiones en ActiveState: Generador para particiones enteras (receta de Python) .


Utilizo Python 3.6.1 e IPython 6.0.0.

skovorodkin avatar May 26 '2017 20:05 skovorodkin

Si bien esta respuesta está bien, recomendaría la respuesta de skovorodkin.

>>> def partition(number):
...     answer = set()
...     answer.add((number, ))
...     for x in range(1, number):
...         for y in partition(number - x):
...             answer.add(tuple(sorted((x, ) + y)))
...     return answer
... 
>>> partition(4)
set([(1, 3), (2, 2), (1, 1, 2), (1, 1, 1, 1), (4,)])

Si desea que todas las permutaciones (es decir, (1, 3) y (3, 1)) cambien answer.add(tuple(sorted((x, ) + y))aanswer.add((x, ) + y)

Nolen Royalty avatar Apr 05 '2012 22:04 Nolen Royalty

Comparé la solución con perfplot(un pequeño proyecto mío para tales propósitos) y descubrí que la respuesta más votada de Nolen también es la más lenta.

Ambas respuestas proporcionadas por skovorodkin son mucho más rápidas. (Tenga en cuenta la escala logarítmica).

ingrese la descripción de la imagen aquí


Para generar la trama:

import perfplot
import collections


def nolen(number):
    answer = set()
    answer.add((number,))
    for x in range(1, number):
        for y in nolen(number - x):
            answer.add(tuple(sorted((x,) + y)))
    return answer


def skovorodkin(n):
    return set(skovorodkin_yield(n))


def skovorodkin_yield(n, I=1):
    yield (n,)
    for i in range(I, n // 2 + 1):
        for p in skovorodkin_yield(n - i, i):
            yield (i,) + p


def accel_asc(n):
    return set(accel_asc_yield(n))


def accel_asc_yield(n):
    a = [0 for i in range(n + 1)]
    k = 1
    y = n - 1
    while k != 0:
        x = a[k - 1] + 1
        k -= 1
        while 2 * x <= y:
            a[k] = x
            y -= x
            k += 1
        l = k + 1
        while x <= y:
            a[k] = x
            a[l] = y
            yield tuple(a[: k + 2])
            x += 1
            y -= 1
        a[k] = x + y
        y = x + y - 1
        yield tuple(a[: k + 1])


def mct(n):
    partitions_of = []
    partitions_of.append([()])
    partitions_of.append([(1,)])
    for num in range(2, n + 1):
        ptitions = set()
        for i in range(num):
            for partition in partitions_of[i]:
                ptitions.add(tuple(sorted((num - i,) + partition)))
        partitions_of.append(list(ptitions))
    return partitions_of[n]


perfplot.show(
    setup=lambda n: n,
    kernels=[nolen, mct, skovorodkin, accel_asc],
    n_range=range(1, 17),
    logy=True,
    # https://stackoverflow.com/a/7829388/353337
    equality_check=lambda a, b: collections.Counter(set(a))
    == collections.Counter(set(b)),
    xlabel="n",
)
Nico Schlömer avatar Jul 26 '2017 17:07 Nico Schlömer