Obtenga las filas que tienen el valor máximo en grupos usando groupby

Resuelto jojo12 asked hace 11 años • 15 respuestas

¿Cómo encuentro todas las filas en un DataFrame de pandas que tienen el valor máximo para countla columna, después de agruparlas por ['Sp','Mt']columnas?

Ejemplo 1: el siguiente DataFrame:

   Sp   Mt Value   count
0  MM1  S1   a     **3**
1  MM1  S1   n       2
2  MM1  S3   cb    **5**
3  MM2  S3   mk    **8**
4  MM2  S4   bg    **10**
5  MM2  S4   dgd     1
6  MM4  S2   rd      2
7  MM4  S2   cb      2
8  MM4  S2   uyi   **7**

El resultado esperado es obtener las filas de resultados cuyo recuento es máximo en cada grupo, así:

   Sp   Mt   Value  count
0  MM1  S1   a      **3**
2  MM1  S3   cb     **5**
3  MM2  S3   mk     **8**
4  MM2  S4   bg     **10** 
8  MM4  S2   uyi    **7**

Ejemplo 2:

   Sp   Mt   Value  count
4  MM2  S4   bg     10
5  MM2  S4   dgd    1
6  MM4  S2   rd     2
7  MM4  S2   cb     8
8  MM4  S2   uyi    8

Rendimiento esperado:

   Sp   Mt   Value  count
4  MM2  S4   bg     10
7  MM4  S2   cb     8
8  MM4  S2   uyi    8
jojo12 avatar Mar 29 '13 21:03 jojo12
Aceptado

En primer lugar, podemos obtener el recuento máximo para cada grupo de esta manera:

In [1]: df
Out[1]:
    Sp  Mt Value  count
0  MM1  S1     a      3
1  MM1  S1     n      2
2  MM1  S3    cb      5
3  MM2  S3    mk      8
4  MM2  S4    bg     10
5  MM2  S4   dgd      1
6  MM4  S2    rd      2
7  MM4  S2    cb      2
8  MM4  S2   uyi      7

In [2]: df.groupby(['Sp', 'Mt'])['count'].max()
Out[2]:
Sp   Mt
MM1  S1     3
     S3     5
MM2  S3     8
     S4    10
MM4  S2     7
Name: count, dtype: int64

Para obtener los índices del DF original puedes hacer:

In [3]: idx = df.groupby(['Sp', 'Mt'])['count'].transform(max) == df['count']

In [4]: df[idx]
Out[4]:
    Sp  Mt Value  count
0  MM1  S1     a      3
2  MM1  S3    cb      5
3  MM2  S3    mk      8
4  MM2  S4    bg     10
8  MM4  S2   uyi      7

Tenga en cuenta que si tiene varios valores máximos por grupo, se devolverán todos.


Actualizar

En un caso de Ave María, esto es lo que solicita el OP:

In [5]: df['count_max'] = df.groupby(['Sp', 'Mt'])['count'].transform(max)

In [6]: df
Out[6]:
    Sp  Mt Value  count  count_max
0  MM1  S1     a      3          3
1  MM1  S1     n      2          3
2  MM1  S3    cb      5          5
3  MM2  S3    mk      8          8
4  MM2  S4    bg     10         10
5  MM2  S4   dgd      1         10
6  MM4  S2    rd      2          7
7  MM4  S2    cb      2          7
8  MM4  S2   uyi      7          7
Zelazny7 avatar Mar 29 '2013 15:03 Zelazny7

Puede ordenar el marco de datos por recuento y luego eliminar duplicados. Creo que es más fácil:

df.sort_values('count', ascending=False).drop_duplicates(['Sp','Mt'])
Rani avatar Nov 16 '2016 10:11 Rani

Una solución sencilla sería aplicar la idxmax()función para obtener índices de filas con valores máximos. Esto filtraría todas las filas con valor máximo en el grupo.

In [367]: df
Out[367]: 
    sp  mt  val  count
0  MM1  S1    a      3
1  MM1  S1    n      2
2  MM1  S3   cb      5
3  MM2  S3   mk      8
4  MM2  S4   bg     10
5  MM2  S4  dgb      1
6  MM4  S2   rd      2
7  MM4  S2   cb      2
8  MM4  S2  uyi      7


# Apply idxmax() and use .loc() on dataframe to filter the rows with max values:
In [368]: df.loc[df.groupby(["sp", "mt"])["count"].idxmax()]
Out[368]: 
    sp  mt  val  count
0  MM1  S1    a      3
2  MM1  S3   cb      5
3  MM2  S3   mk      8
4  MM2  S4   bg     10
8  MM4  S2  uyi      7


# Just to show what values are returned by .idxmax() above:
In [369]: df.groupby(["sp", "mt"])["count"].idxmax().values
Out[369]: array([0, 2, 3, 4, 8])
Surya avatar Jul 07 '2017 00:07 Surya

Puede que no necesites hacerlo groupby(), pero usa ambos sort_values+drop_duplicates

df.sort_values('count').drop_duplicates(['Sp', 'Mt'], keep='last')
Out[190]: 
    Sp  Mt Value  count
0  MM1  S1     a      3
2  MM1  S3    cb      5
8  MM4  S2   uyi      7
3  MM2  S3    mk      8
4  MM2  S4    bg     10

También casi la misma lógica usandotail

df.sort_values('count').groupby(['Sp', 'Mt']).tail(1)
Out[52]: 
    Sp  Mt Value  count
0  MM1  S1     a      3
2  MM1  S3    cb      5
8  MM4  S2   uyi      7
3  MM2  S3    mk      8
4  MM2  S4    bg     10
BENY avatar Jan 04 '2019 14:01 BENY

Después de haber probado la solución sugerida por Zelazny en un DataFrame relativamente grande (~400k filas), encontré que era muy lenta. Aquí hay una alternativa que encontré para ejecutar órdenes de magnitud más rápido en mi conjunto de datos.

df = pd.DataFrame({
    'sp' : ['MM1', 'MM1', 'MM1', 'MM2', 'MM2', 'MM2', 'MM4', 'MM4', 'MM4'],
    'mt' : ['S1', 'S1', 'S3', 'S3', 'S4', 'S4', 'S2', 'S2', 'S2'],
    'val' : ['a', 'n', 'cb', 'mk', 'bg', 'dgb', 'rd', 'cb', 'uyi'],
    'count' : [3,2,5,8,10,1,2,2,7]
    })

df_grouped = df.groupby(['sp', 'mt']).agg({'count':'max'})

df_grouped = df_grouped.reset_index()

df_grouped = df_grouped.rename(columns={'count':'count_max'})

df = pd.merge(df, df_grouped, how='left', on=['sp', 'mt'])

df = df[df['count'] == df['count_max']]
landewednack avatar Feb 11 '2014 17:02 landewednack

Uso groupbyy idxmaxmétodos:

  1. transferir col datea datetime:

    df['date'] = pd.to_datetime(df['date'])
    
  2. obtener el índice de maxla columna date, después de groupyby ad_id:

    idx = df.groupby(by='ad_id')['date'].idxmax()
    
  3. obtener los datos deseados:

    df_max = df.loc[idx,]
    
   ad_id  price       date
7     22      2 2018-06-11
6     23      2 2018-06-22
2     24      2 2018-06-30
3     28      5 2018-06-22
blueear avatar Jul 24 '2018 10:07 blueear