Cómo crear un diccionario de dos columnas de DataFrame de pandas
¿Cuál es la forma más eficiente de organizar el siguiente marco de datos de pandas?
datos =
Position Letter
1 a
2 b
3 c
4 d
5 e
en un diccionario como alphabet[1 : 'a', 2 : 'b', 3 : 'c', 4 : 'd', 5 : 'e']
?
Aceptado
In [9]: pd.Series(df.Letter.values,index=df.Position).to_dict()
Out[9]: {1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e'}
Comparación de velocidades (usando el método de Wouter)
In [6]: df = pd.DataFrame(randint(0,10,10000).reshape(5000,2),columns=list('AB'))
In [7]: %timeit dict(zip(df.A,df.B))
1000 loops, best of 3: 1.27 ms per loop
In [8]: %timeit pd.Series(df.A.values,index=df.B).to_dict()
1000 loops, best of 3: 987 us per loop
Encontré una forma más rápida de resolver el problema, al menos en conjuntos de datos realmente grandes, usando:
df.set_index(KEY).to_dict()[VALUE]
Prueba en 50.000 filas:
df = pd.DataFrame(np.random.randint(32, 120, 100000).reshape(50000,2),columns=list('AB'))
df['A'] = df['A'].apply(chr)
%timeit dict(zip(df.A,df.B))
%timeit pd.Series(df.A.values,index=df.B).to_dict()
%timeit df.set_index('A').to_dict()['B']
Producción:
100 loops, best of 3: 7.04 ms per loop # WouterOvermeire
100 loops, best of 3: 9.83 ms per loop # Jeff
100 loops, best of 3: 4.28 ms per loop # Kikohs (me)
dict(zip(data['Position'], data['Letter']))
esto te dará:
{1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e'}
En Python 3.6, la forma más rápida sigue siendo la de WouterOvermeire. La propuesta de Kikohs es más lenta que las otras dos opciones.
import timeit
setup = '''
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randint(32, 120, 100000).reshape(50000,2),columns=list('AB'))
df['A'] = df['A'].apply(chr)
'''
timeit.Timer('dict(zip(df.A,df.B))', setup=setup).repeat(7,500)
timeit.Timer('pd.Series(df.A.values,index=df.B).to_dict()', setup=setup).repeat(7,500)
timeit.Timer('df.set_index("A").to_dict()["B"]', setup=setup).repeat(7,500)
Resultados:
1.1214002349999777 s # WouterOvermeire
1.1922008498571748 s # Jeff
1.7034366211428602 s # Kikohs