Crear contador con múltiples variables [duplicado]
Tengo mis datos que se ven a continuación:
CustomerID TripDate
1 1/3/2013
1 1/4/2013
1 1/9/2013
2 2/1/2013
2 2/4/2013
3 1/2/2013
Necesito crear una variable de contador, que será como a continuación:
CustomerID TripDate TripCounter
1 1/3/2013 1
1 1/4/2013 2
1 1/9/2013 3
2 2/1/2013 1
2 2/4/2013 2
3 1/2/2013 1
Tripcounter
será para cada cliente.
Usar ave
. Suponiendo que data.frame
se llama "mydf":
mydf$counter <- with(mydf, ave(CustomerID, CustomerID, FUN = seq_along))
mydf
# CustomerID TripDate counter
# 1 1 1/3/2013 1
# 2 1 1/4/2013 2
# 3 1 1/9/2013 3
# 4 2 2/1/2013 1
# 5 2 2/4/2013 2
# 6 3 1/2/2013 1
Por si sirve de algo, también implementé una versión de este enfoque en una función incluida en mi paquete "splitstackshape". La función se llama getanID
:
mydf <- data.frame(IDA = c("a", "a", "a", "b", "b", "b", "b"),
IDB = c(1, 2, 1, 1, 2, 2, 2), values = 1:7)
mydf
# install.packages("splitstackshape")
library(splitstackshape)
# getanID(mydf, id.vars = c("IDA", "IDB"))
getanID(mydf, id.vars = 1:2)
# IDA IDB values .id
# 1 a 1 1 1
# 2 a 2 2 1
# 3 a 1 3 2
# 4 b 1 4 1
# 5 b 2 5 1
# 6 b 2 6 2
# 7 b 2 7 3
Como puede ver en el ejemplo anterior, escribí la función de tal manera que pueda especificar una o más columnas que deben tratarse como columnas de ID. Comprueba si alguno de ellos id.vars
está duplicado y, si lo está, genera una nueva variable de ID para usted.
También puedes usar plyr
para esto (usando los datos de ejemplo de @AnadaMahto):
> ddply(mydf, .(IDA), transform, .id = seq_along(IDA))
IDA IDB values .id
1 a 1 1 1
2 a 2 2 2
3 a 1 3 3
4 b 1 4 1
5 b 2 5 2
6 b 2 6 3
7 b 2 7 4
o incluso:
> ddply(mydf, .(IDA, IDB), transform, .id = seq_along(IDA))
IDA IDB values .id
1 a 1 1 1
2 a 1 3 2
3 a 2 2 1
4 b 1 4 1
5 b 2 5 1
6 b 2 6 2
7 b 2 7 3
Tenga en cuenta que plyr
no tiene fama de ser la solución más rápida, para eso debe echarle un vistazo data.table
.
He aquí un data.table
enfoque:
library(data.table)
DT <- data.table(mydf)
DT[, .id := sequence(.N), by = "IDA,IDB"]
DT
# IDA IDB values .id
# 1: a 1 1 1
# 2: a 2 2 1
# 3: a 1 3 2
# 4: b 1 4 1
# 5: b 2 5 1
# 6: b 2 6 2
# 7: b 2 7 3