La forma más rápida de enumerar todos los números primos debajo de N

Resuelto jbochi asked hace 14 años • 41 respuestas

Este es el mejor algoritmo que se me ocurrió.

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

¿Se puede hacer aún más rápido?

Este código tiene un defecto: dado que numberses un conjunto desordenado, no hay garantía de que numbers.pop()se elimine el número más bajo del conjunto. Sin embargo, funciona (al menos para mí) para algunos números de entrada:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True
jbochi avatar Jan 15 '10 06:01 jbochi
Aceptado

Advertencia: timeit los resultados pueden variar debido a diferencias en el hardware o la versión de Python.

A continuación se muestra un script que compara varias implementaciones:

  • ambi_sieve_plain,
  • rwh_primes ,
  • rwh_primes1 ,
  • rwh_primes2 ,
  • tamiz de Atkin ,
  • tamiz de Eratóstenes ,
  • sundaram3 ,
  • rueda_tamiz_30 ,
  • ambi_sieve (requiere numpy)
  • primesfrom3to (requiere numpy)
  • primesfrom2to (requiere numpy)

Muchas gracias a stephan por llamar mi atención sobre sieve_wheel_30. El crédito es para Robert William Hanks por primesfrom2to, primesfrom3to, rwh_primes, rwh_primes1 y rwh_primes2.

De los métodos simples de Python probados, con psyco , para n=1000000, rwh_primes1 fue el más rápido probado.

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| rwh_primes1         | 43.0  |
| sieveOfAtkin        | 46.4  |
| rwh_primes          | 57.4  |
| sieve_wheel_30      | 63.0  |
| rwh_primes2         | 67.8  |    
| sieveOfEratosthenes | 147.0 |
| ambi_sieve_plain    | 152.0 |
| sundaram3           | 194.0 |
+---------------------+-------+

De los métodos simples de Python probados, sin psyco , para n=1000000, rwh_primes2 fue el más rápido.

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| rwh_primes2         | 68.1  |
| rwh_primes1         | 93.7  |
| rwh_primes          | 94.6  |
| sieve_wheel_30      | 97.4  |
| sieveOfEratosthenes | 178.0 |
| ambi_sieve_plain    | 286.0 |
| sieveOfAtkin        | 314.0 |
| sundaram3           | 416.0 |
+---------------------+-------+

De todos los métodos probados, que permiten numpy , para n=1000000, primesfrom2to fue el más rápido probado.

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| primesfrom2to       | 15.9  |
| primesfrom3to       | 18.4  |
| ambi_sieve          | 29.3  |
+---------------------+-------+

Los tiempos se midieron usando el comando:

python -mtimeit -s"import primes" "primes.{method}(1000000)"

con {method}reemplazado por cada uno de los nombres de los métodos.

primos.py:

#!/usr/bin/env python
import psyco; psyco.full()
from math import sqrt, ceil
import numpy as np

def rwh_primes(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns  a list of primes < n """
    sieve = [True] * n
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i]:
            sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
    return [2] + [i for i in xrange(3,n,2) if sieve[i]]

def rwh_primes1(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns  a list of primes < n """
    sieve = [True] * (n/2)
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i/2]:
            sieve[i*i/2::i] = [False] * ((n-i*i-1)/(2*i)+1)
    return [2] + [2*i+1 for i in xrange(1,n/2) if sieve[i]]

def rwh_primes2(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    correction = (n%6>1)
    n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
    sieve = [True] * (n/3)
    sieve[0] = False
    for i in xrange(int(n**0.5)/3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      ((k*k)/3)      ::2*k]=[False]*((n/6-(k*k)/6-1)/k+1)
        sieve[(k*k+4*k-2*k*(i&1))/3::2*k]=[False]*((n/6-(k*k+4*k-2*k*(i&1))/6-1)/k+1)
    return [2,3] + [3*i+1|1 for i in xrange(1,n/3-correction) if sieve[i]]

def sieve_wheel_30(N):
    # http://zerovolt.com/?p=88
    ''' Returns a list of primes <= N using wheel criterion 2*3*5 = 30

Copyright 2009 by zerovolt.com
This code is free for non-commercial purposes, in which case you can just leave this comment as a credit for my work.
If you need this code for commercial purposes, please contact me by sending an email to: info [at] zerovolt [dot] com.'''
    __smallp = ( 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
    61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
    149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
    229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311,
    313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
    409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
    499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
    601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683,
    691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
    809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
    907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997)

    wheel = (2, 3, 5)
    const = 30
    if N < 2:
        return []
    if N <= const:
        pos = 0
        while __smallp[pos] <= N:
            pos += 1
        return list(__smallp[:pos])
    # make the offsets list
    offsets = (7, 11, 13, 17, 19, 23, 29, 1)
    # prepare the list
    p = [2, 3, 5]
    dim = 2 + N // const
    tk1  = [True] * dim
    tk7  = [True] * dim
    tk11 = [True] * dim
    tk13 = [True] * dim
    tk17 = [True] * dim
    tk19 = [True] * dim
    tk23 = [True] * dim
    tk29 = [True] * dim
    tk1[0] = False
    # help dictionary d
    # d[a , b] = c  ==> if I want to find the smallest useful multiple of (30*pos)+a
    # on tkc, then I need the index given by the product of [(30*pos)+a][(30*pos)+b]
    # in general. If b < a, I need [(30*pos)+a][(30*(pos+1))+b]
    d = {}
    for x in offsets:
        for y in offsets:
            res = (x*y) % const
            if res in offsets:
                d[(x, res)] = y
    # another help dictionary: gives tkx calling tmptk[x]
    tmptk = {1:tk1, 7:tk7, 11:tk11, 13:tk13, 17:tk17, 19:tk19, 23:tk23, 29:tk29}
    pos, prime, lastadded, stop = 0, 0, 0, int(ceil(sqrt(N)))
    # inner functions definition
    def del_mult(tk, start, step):
        for k in xrange(start, len(tk), step):
            tk[k] = False
    # end of inner functions definition
    cpos = const * pos
    while prime < stop:
        # 30k + 7
        if tk7[pos]:
            prime = cpos + 7
            p.append(prime)
            lastadded = 7
            for off in offsets:
                tmp = d[(7, off)]
                start = (pos + prime) if off == 7 else (prime * (const * (pos + 1 if tmp < 7 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 11
        if tk11[pos]:
            prime = cpos + 11
            p.append(prime)
            lastadded = 11
            for off in offsets:
                tmp = d[(11, off)]
                start = (pos + prime) if off == 11 else (prime * (const * (pos + 1 if tmp < 11 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 13
        if tk13[pos]:
            prime = cpos + 13
            p.append(prime)
            lastadded = 13
            for off in offsets:
                tmp = d[(13, off)]
                start = (pos + prime) if off == 13 else (prime * (const * (pos + 1 if tmp < 13 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 17
        if tk17[pos]:
            prime = cpos + 17
            p.append(prime)
            lastadded = 17
            for off in offsets:
                tmp = d[(17, off)]
                start = (pos + prime) if off == 17 else (prime * (const * (pos + 1 if tmp < 17 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 19
        if tk19[pos]:
            prime = cpos + 19
            p.append(prime)
            lastadded = 19
            for off in offsets:
                tmp = d[(19, off)]
                start = (pos + prime) if off == 19 else (prime * (const * (pos + 1 if tmp < 19 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 23
        if tk23[pos]:
            prime = cpos + 23
            p.append(prime)
            lastadded = 23
            for off in offsets:
                tmp = d[(23, off)]
                start = (pos + prime) if off == 23 else (prime * (const * (pos + 1 if tmp < 23 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 29
        if tk29[pos]:
            prime = cpos + 29
            p.append(prime)
            lastadded = 29
            for off in offsets:
                tmp = d[(29, off)]
                start = (pos + prime) if off == 29 else (prime * (const * (pos + 1 if tmp < 29 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # now we go back to top tk1, so we need to increase pos by 1
        pos += 1
        cpos = const * pos
        # 30k + 1
        if tk1[pos]:
            prime = cpos + 1
            p.append(prime)
            lastadded = 1
            for off in offsets:
                tmp = d[(1, off)]
                start = (pos + prime) if off == 1 else (prime * (const * pos + tmp) )//const
                del_mult(tmptk[off], start, prime)
    # time to add remaining primes
    # if lastadded == 1, remove last element and start adding them from tk1
    # this way we don't need an "if" within the last while
    if lastadded == 1:
        p.pop()
    # now complete for every other possible prime
    while pos < len(tk1):
        cpos = const * pos
        if tk1[pos]: p.append(cpos + 1)
        if tk7[pos]: p.append(cpos + 7)
        if tk11[pos]: p.append(cpos + 11)
        if tk13[pos]: p.append(cpos + 13)
        if tk17[pos]: p.append(cpos + 17)
        if tk19[pos]: p.append(cpos + 19)
        if tk23[pos]: p.append(cpos + 23)
        if tk29[pos]: p.append(cpos + 29)
        pos += 1
    # remove exceeding if present
    pos = len(p) - 1
    while p[pos] > N:
        pos -= 1
    if pos < len(p) - 1:
        del p[pos+1:]
    # return p list
    return p

def sieveOfEratosthenes(n):
    """sieveOfEratosthenes(n): return the list of the primes < n."""
    # Code from: <[email protected]>, Nov 30 2006
    # http://groups.google.com/group/comp.lang.python/msg/f1f10ced88c68c2d
    if n <= 2:
        return []
    sieve = range(3, n, 2)
    top = len(sieve)
    for si in sieve:
        if si:
            bottom = (si*si - 3) // 2
            if bottom >= top:
                break
            sieve[bottom::si] = [0] * -((bottom - top) // si)
    return [2] + [el for el in sieve if el]

def sieveOfAtkin(end):
    """sieveOfAtkin(end): return a list of all the prime numbers <end
    using the Sieve of Atkin."""
    # Code by Steve Krenzel, <[email protected]>, improved
    # Code: https://web.archive.org/web/20080324064651/http://krenzel.info/?p=83
    # Info: http://en.wikipedia.org/wiki/Sieve_of_Atkin
    assert end > 0
    lng = ((end-1) // 2)
    sieve = [False] * (lng + 1)

    x_max, x2, xd = int(sqrt((end-1)/4.0)), 0, 4
    for xd in xrange(4, 8*x_max + 2, 8):
        x2 += xd
        y_max = int(sqrt(end-x2))
        n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
        if not (n & 1):
            n -= n_diff
            n_diff -= 2
        for d in xrange((n_diff - 1) << 1, -1, -8):
            m = n % 12
            if m == 1 or m == 5:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, x2, xd = int(sqrt((end-1) / 3.0)), 0, 3
    for xd in xrange(3, 6 * x_max + 2, 6):
        x2 += xd
        y_max = int(sqrt(end-x2))
        n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
        if not(n & 1):
            n -= n_diff
            n_diff -= 2
        for d in xrange((n_diff - 1) << 1, -1, -8):
            if n % 12 == 7:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, y_min, x2, xd = int((2 + sqrt(4-8*(1-end)))/4), -1, 0, 3
    for x in xrange(1, x_max + 1):
        x2 += xd
        xd += 6
        if x2 >= end: y_min = (((int(ceil(sqrt(x2 - end))) - 1) << 1) - 2) << 1
        n, n_diff = ((x*x + x) << 1) - 1, (((x-1) << 1) - 2) << 1
        for d in xrange(n_diff, y_min, -8):
            if n % 12 == 11:
                m = n >> 1
                sieve[m] = not sieve[m]
            n += d

    primes = [2, 3]
    if end <= 3:
        return primes[:max(0,end-2)]

    for n in xrange(5 >> 1, (int(sqrt(end))+1) >> 1):
        if sieve[n]:
            primes.append((n << 1) + 1)
            aux = (n << 1) + 1
            aux *= aux
            for k in xrange(aux, end, 2 * aux):
                sieve[k >> 1] = False

    s  = int(sqrt(end)) + 1
    if s  % 2 == 0:
        s += 1
    primes.extend([i for i in xrange(s, end, 2) if sieve[i >> 1]])

    return primes

def ambi_sieve_plain(n):
    s = range(3, n, 2)
    for m in xrange(3, int(n**0.5)+1, 2): 
        if s[(m-3)/2]: 
            for t in xrange((m*m-3)/2,(n>>1)-1,m):
                s[t]=0
    return [2]+[t for t in s if t>0]

def sundaram3(max_n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/2073279#2073279
    numbers = range(3, max_n+1, 2)
    half = (max_n)//2
    initial = 4

    for step in xrange(3, max_n+1, 2):
        for i in xrange(initial, half, step):
            numbers[i-1] = 0
        initial += 2*(step+1)

        if initial > half:
            return [2] + filter(None, numbers)

################################################################################
# Using Numpy:
def ambi_sieve(n):
    # http://tommih.blogspot.com/2009/04/fast-prime-number-generator.html
    s = np.arange(3, n, 2)
    for m in xrange(3, int(n ** 0.5)+1, 2): 
        if s[(m-3)/2]: 
            s[(m*m-3)/2::m]=0
    return np.r_[2, s[s>0]]

def primesfrom3to(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns a array of primes, p < n """
    assert n>=2
    sieve = np.ones(n/2, dtype=np.bool)
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i/2]:
            sieve[i*i/2::i] = False
    return np.r_[2, 2*np.nonzero(sieve)[0][1::]+1]    

def primesfrom2to(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = np.ones(n/3 + (n%6==2), dtype=np.bool)
    sieve[0] = False
    for i in xrange(int(n**0.5)/3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[      ((k*k)/3)      ::2*k] = False
            sieve[(k*k+4*k-2*k*(i&1))/3::2*k] = False
    return np.r_[2,3,((3*np.nonzero(sieve)[0]+1)|1)]

if __name__=='__main__':
    import itertools
    import sys

    def test(f1,f2,num):
        print('Testing {f1} and {f2} return same results'.format(
            f1=f1.func_name,
            f2=f2.func_name))
        if not all([a==b for a,b in itertools.izip_longest(f1(num),f2(num))]):
            sys.exit("Error: %s(%s) != %s(%s)"%(f1.func_name,num,f2.func_name,num))

    n=1000000
    test(sieveOfAtkin,sieveOfEratosthenes,n)
    test(sieveOfAtkin,ambi_sieve,n)
    test(sieveOfAtkin,ambi_sieve_plain,n) 
    test(sieveOfAtkin,sundaram3,n)
    test(sieveOfAtkin,sieve_wheel_30,n)
    test(sieveOfAtkin,primesfrom3to,n)
    test(sieveOfAtkin,primesfrom2to,n)
    test(sieveOfAtkin,rwh_primes,n)
    test(sieveOfAtkin,rwh_primes1,n)         
    test(sieveOfAtkin,rwh_primes2,n)

La ejecución del script prueba que todas las implementaciones dan el mismo resultado.

unutbu avatar Jan 15 '2010 00:01 unutbu

Código Python puro más rápido y con mayor capacidad de memoria:

def primes(n):
    """ Returns  a list of primes < n """
    sieve = [True] * n
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i]:
            sieve[i*i::2*i]=[False]*((n-i*i-1)//(2*i)+1)
    return [2] + [i for i in range(3,n,2) if sieve[i]]

o empezando por medio colador

def primes1(n):
    """ Returns  a list of primes < n """
    sieve = [True] * (n//2)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = [False] * ((n-i*i-1)//(2*i)+1)
    return [2] + [2*i+1 for i in range(1,n//2) if sieve[i]]

Código numpy más rápido y con más memoria:

import numpy
def primesfrom3to(n):
    """ Returns a array of primes, 3 <= p < n """
    sieve = numpy.ones(n//2, dtype=bool)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = False
    return 2*numpy.nonzero(sieve)[0][1::]+1

una variación más rápida a partir de un tercio de tamiz:

import numpy
def primesfrom2to(n):
    """ Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = numpy.ones(n//3 + (n%6==2), dtype=bool)
    for i in range(1,int(n**0.5)//3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[       k*k//3     ::2*k] = False
            sieve[k*(k-2*(i&1)+4)//3::2*k] = False
    return numpy.r_[2,3,((3*numpy.nonzero(sieve)[0][1:]+1)|1)]

Una versión puramente Python (difícil de codificar) del código anterior sería:

def primes2(n):
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    n, correction = n-n%6+6, 2-(n%6>1)
    sieve = [True] * (n//3)
    for i in range(1,int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      k*k//3      ::2*k] = [False] * ((n//6-k*k//6-1)//k+1)
        sieve[k*(k-2*(i&1)+4)//3::2*k] = [False] * ((n//6-k*(k-2*(i&1)+4)//6-1)//k+1)
    return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]

Desafortunadamente, Python puro no adopta la forma más simple y rápida de realizar tareas, y llamar len()dentro del bucle [False]*len(sieve[((k*k)//3)::2*k])es demasiado lento. Así que tuve que improvisar para corregir los datos (y evitar más matemáticas) y hacer algo de magia matemática extrema (y dolorosa).

Personalmente, creo que es una pena que numpy (que se usa tan ampliamente) no sea parte de la biblioteca estándar de Python, y que los desarrolladores de Python parezcan pasar completamente por alto las mejoras en la sintaxis y la velocidad.

Robert William Hanks avatar Jun 14 '2010 05:06 Robert William Hanks

Aquí hay una muestra bastante clara del libro de cocina de Python : la versión más rápida propuesta en esa URL es:

import itertools
def erat2( ):
    D = {  }
    yield 2
    for q in itertools.islice(itertools.count(3), 0, None, 2):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            x = p + q
            while x in D or not (x&1):
                x += p
            D[x] = p

entonces eso daría

def get_primes_erat(n):
  return list(itertools.takewhile(lambda p: p<n, erat2()))

Al medir en el indicador de shell (como prefiero hacer) con este código en pri.py, observo:

$ python2.5 -mtimeit -s'import pri' 'pri.get_primes(1000000)'
10 loops, best of 3: 1.69 sec per loop
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes_erat(1000000)'
10 loops, best of 3: 673 msec per loop

por lo que parece que la solución Cookbook es dos veces más rápida.

Alex Martelli avatar Jan 14 '2010 23:01 Alex Martelli