¿Se puede utilizar el paquete dplyr para mutación condicional?
¿Se puede utilizar la mutación cuando la mutación es condicional (dependiendo de los valores de ciertos valores de columna)?
Este ejemplo ayuda a mostrar lo que quiero decir.
structure(list(a = c(1, 3, 4, 6, 3, 2, 5, 1), b = c(1, 3, 4,
2, 6, 7, 2, 6), c = c(6, 3, 6, 5, 3, 6, 5, 3), d = c(6, 2, 4,
5, 3, 7, 2, 6), e = c(1, 2, 4, 5, 6, 7, 6, 3), f = c(2, 3, 4,
2, 2, 7, 5, 2)), .Names = c("a", "b", "c", "d", "e", "f"), row.names = c(NA,
8L), class = "data.frame")
a b c d e f
1 1 1 6 6 1 2
2 3 3 3 2 2 3
3 4 4 6 4 4 4
4 6 2 5 5 5 2
5 3 6 3 3 6 2
6 2 7 6 7 7 7
7 5 2 5 2 6 5
8 1 6 3 6 3 2
Esperaba encontrar una solución a mi problema usando el paquete dplyr (y sí, sé que este no es un código que debería funcionar, pero supongo que deja claro el propósito) para crear una nueva columna g:
library(dplyr)
df <- mutate(df,
if (a == 2 | a == 5 | a == 7 | (a == 1 & b == 4)){g = 2},
if (a == 0 | a == 1 | a == 4 | a == 3 | c == 4) {g = 3})
El resultado del código que estoy buscando debería tener este resultado en este ejemplo en particular:
a b c d e f g
1 1 1 6 6 1 2 3
2 3 3 3 2 2 3 3
3 4 4 6 4 4 4 3
4 6 2 5 5 5 2 NA
5 3 6 3 3 6 2 NA
6 2 7 6 7 7 7 2
7 5 2 5 2 6 5 2
8 1 6 3 6 3 2 3
¿Alguien tiene una idea sobre cómo hacer esto en dplyr? Este marco de datos es sólo un ejemplo, los marcos de datos con los que estoy tratando son mucho más grandes. Debido a su velocidad, intenté usar dplyr, pero ¿quizás haya otras formas mejores de manejar este problema?
Usarifelse
df %>%
mutate(g = ifelse(a == 2 | a == 5 | a == 7 | (a == 1 & b == 4), 2,
ifelse(a == 0 | a == 1 | a == 4 | a == 3 | c == 4, 3, NA)))
Agregado - if_else: Tenga en cuenta que en dplyr 0.5 hay una if_else
función definida, por lo que una alternativa sería reemplazarla ifelse
con if_else
; sin embargo, tenga en cuenta que since if_else
es más estricto que ifelse
(ambas partes de la condición deben tener el mismo tipo), por lo que NA
en ese caso debería reemplazarse con NA_real_
.
df %>%
mutate(g = if_else(a == 2 | a == 5 | a == 7 | (a == 1 & b == 4), 2,
if_else(a == 0 | a == 1 | a == 4 | a == 3 | c == 4, 3, NA_real_)))
Agregado: case_when Desde que se publicó esta pregunta, dplyr ha agregado case_when
otra alternativa sería:
df %>% mutate(g = case_when(a == 2 | a == 5 | a == 7 | (a == 1 & b == 4) ~ 2,
a == 0 | a == 1 | a == 4 | a == 3 | c == 4 ~ 3,
TRUE ~ NA_real_))
Agregado - aritmética/na_if Si los valores son numéricos y las condiciones (excepto el valor predeterminado de NA al final) son mutuamente excluyentes, como es el caso en la pregunta, entonces podemos usar una expresión aritmética tal que cada término se multiplique por el resultado deseado usando na_if
al final para reemplazar 0 con NA.
df %>%
mutate(g = 2 * (a == 2 | a == 5 | a == 7 | (a == 1 & b == 4)) +
3 * (a == 0 | a == 1 | a == 4 | a == 3 | c == 4),
g = na_if(g, 0))
Dado que solicita otras formas mejores de manejar el problema, aquí tiene otra forma de usar data.table
:
require(data.table)
setDT(df)
df[a %in% c(0,1,3,4) | c == 4, g := 3L]
df[a %in% c(2,5,7) | (a==1 & b==4), g := 2L]
Tenga en cuenta que el orden de las declaraciones condicionales se invierte para obtenerlas g
correctamente. No se g
realiza ninguna copia, ni siquiera durante la segunda asignación; se reemplaza en el lugar .
En datos más grandes, esto tendría un mejor rendimiento que usar nested if-else
, ya que puede evaluar tanto los casos de "sí" como los de "no" , y el anidamiento puede volverse más difícil de leer/mantener en mi humilde opinión.
Aquí hay un punto de referencia sobre datos relativamente más grandes:
# NB: benchmark timings are as of R 3.1.0, data.table v1.9.2
require(data.table)
require(dplyr)
DT <- setDT(lapply(1:6, function(x) sample(7, 1e7, TRUE)))
setnames(DT, letters[1:6])
# > dim(DT)
# [1] 10000000 6
DF <- as.data.frame(DT)
DT_fun <- function(DT) {
DT[(a %in% c(0,1,3,4) | c == 4), g := 3L]
DT[a %in% c(2,5,7) | (a==1 & b==4), g := 2L]
}
DPLYR_fun <- function(DF) {
mutate(DF, g = ifelse(a %in% c(2,5,7) | (a==1 & b==4), 2L,
ifelse(a %in% c(0,1,3,4) | c==4, 3L, NA_integer_)))
}
BASE_fun <- function(DF) { # R v3.1.0
transform(DF, g = ifelse(a %in% c(2,5,7) | (a==1 & b==4), 2L,
ifelse(a %in% c(0,1,3,4) | c==4, 3L, NA_integer_)))
}
system.time(ans1 <- DT_fun(DT))
# user system elapsed
# 2.659 0.420 3.107
system.time(ans2 <- DPLYR_fun(DF))
# user system elapsed
# 11.822 1.075 12.976
system.time(ans3 <- BASE_fun(DF))
# user system elapsed
# 11.676 1.530 13.319
identical(as.data.frame(ans1), as.data.frame(ans2))
# [1] TRUE
identical(as.data.frame(ans1), as.data.frame(ans3))
# [1] TRUE
No estoy seguro de si esta es una alternativa que habías pedido, pero espero que te ayude.
dplyr ahora tiene una función case_when
que ofrece un if vectorizado. La sintaxis es un poco extraña en comparación con mosaic:::derivedFactor
el hecho de que no se puede acceder a las variables en la forma estándar de dplyr y es necesario declarar el modo NA, pero es considerablemente más rápida que mosaic:::derivedFactor
.
df %>%
mutate(g = case_when(a %in% c(2,5,7) | (a==1 & b==4) ~ 2L,
a %in% c(0,1,3,4) | c == 4 ~ 3L,
TRUE~as.integer(NA)))
EDITAR: Si está utilizando dplyr::case_when()
una versión anterior a la 0.7.0 del paquete, debe anteponer los nombres de las variables con ' .$
' (por ejemplo, escribir .$a == 1
dentro case_when
).
Punto de referencia : para el punto de referencia (reutilizar funciones de la publicación de Arun) y reducir el tamaño de la muestra:
require(data.table)
require(mosaic)
require(dplyr)
require(microbenchmark)
set.seed(42) # To recreate the dataframe
DT <- setDT(lapply(1:6, function(x) sample(7, 10000, TRUE)))
setnames(DT, letters[1:6])
DF <- as.data.frame(DT)
DPLYR_case_when <- function(DF) {
DF %>%
mutate(g = case_when(a %in% c(2,5,7) | (a==1 & b==4) ~ 2L,
a %in% c(0,1,3,4) | c==4 ~ 3L,
TRUE~as.integer(NA)))
}
DT_fun <- function(DT) {
DT[(a %in% c(0,1,3,4) | c == 4), g := 3L]
DT[a %in% c(2,5,7) | (a==1 & b==4), g := 2L]
}
DPLYR_fun <- function(DF) {
mutate(DF, g = ifelse(a %in% c(2,5,7) | (a==1 & b==4), 2L,
ifelse(a %in% c(0,1,3,4) | c==4, 3L, NA_integer_)))
}
mosa_fun <- function(DF) {
mutate(DF, g = derivedFactor(
"2" = (a == 2 | a == 5 | a == 7 | (a == 1 & b == 4)),
"3" = (a == 0 | a == 1 | a == 4 | a == 3 | c == 4),
.method = "first",
.default = NA
))
}
perf_results <- microbenchmark(
dt_fun <- DT_fun(copy(DT)),
dplyr_ifelse <- DPLYR_fun(copy(DF)),
dplyr_case_when <- DPLYR_case_when(copy(DF)),
mosa <- mosa_fun(copy(DF)),
times = 100L
)
Esto da:
print(perf_results)
Unit: milliseconds
expr min lq mean median uq max neval
dt_fun 1.391402 1.560751 1.658337 1.651201 1.716851 2.383801 100
dplyr_ifelse 1.172601 1.230351 1.331538 1.294851 1.390351 1.995701 100
dplyr_case_when 1.648201 1.768002 1.860968 1.844101 1.958801 2.207001 100
mosa 255.591301 281.158350 291.391586 286.549802 292.101601 545.880702 100
La derivedFactor
función del mosaic
paquete parece estar diseñada para manejar esto. Usando este ejemplo, se vería así:
library(dplyr)
library(mosaic)
df <- mutate(df, g = derivedFactor(
"2" = (a == 2 | a == 5 | a == 7 | (a == 1 & b == 4)),
"3" = (a == 0 | a == 1 | a == 4 | a == 3 | c == 4),
.method = "first",
.default = NA
))
(Si desea que el resultado sea numérico en lugar de un factor, puede realizar derivedFactor
una as.numeric
llamada).
derivedFactor
También se puede utilizar para un número arbitrario de condicionales.