Reúna varios conjuntos de columnas

Resuelto Andrew asked hace 55 años • 5 respuestas

Tengo datos de una encuesta en línea en la que los encuestados realizan un ciclo de preguntas de 1 a 3 veces. El software de encuestas (Qualtrics) registra estos datos en varias columnas; es decir, la pregunta 3.2 de la encuesta tendrá las columnas Q3.2.1., Q3.2.2.y Q3.2.3.:

df <- data.frame(
  id = 1:10,
  time = as.Date('2009-01-01') + 0:9,
  Q3.2.1. = rnorm(10, 0, 1),
  Q3.2.2. = rnorm(10, 0, 1),
  Q3.2.3. = rnorm(10, 0, 1),
  Q3.3.1. = rnorm(10, 0, 1),
  Q3.3.2. = rnorm(10, 0, 1),
  Q3.3.3. = rnorm(10, 0, 1)
)

# Sample data

   id       time    Q3.2.1.     Q3.2.2.    Q3.2.3.     Q3.3.1.    Q3.3.2.     Q3.3.3.
1   1 2009-01-01 -0.2059165 -0.29177677 -0.7107192  1.52718069 -0.4484351 -1.21550600
2   2 2009-01-02 -0.1981136 -1.19813815  1.1750200 -0.40380049 -1.8376094  1.03588482
3   3 2009-01-03  0.3514795 -0.27425539  1.1171712 -1.02641801 -2.0646661 -0.35353058
...

Quiero combinar todas las columnas QN.N* en columnas QN.N individuales ordenadas y, en última instancia, terminar con algo como esto:

   id       time loop_number        Q3.2        Q3.3
1   1 2009-01-01           1 -0.20591649  1.52718069
2   2 2009-01-02           1 -0.19811357 -0.40380049
3   3 2009-01-03           1  0.35147949 -1.02641801
...
11  1 2009-01-01           2 -0.29177677  -0.4484351
12  2 2009-01-02           2 -1.19813815  -1.8376094
13  3 2009-01-03           2 -0.27425539  -2.0646661
...
21  1 2009-01-01           3 -0.71071921 -1.21550600
22  2 2009-01-02           3  1.17501999  1.03588482
23  3 2009-01-03           3  1.11717121 -0.35353058
...

La tidyrbiblioteca tiene la gather()función que funciona muy bien para combinar un conjunto de columnas:

library(dplyr)
library(tidyr)
library(stringr)

df %>% gather(loop_number, Q3.2, starts_with("Q3.2")) %>% 
  mutate(loop_number = str_sub(loop_number,-2,-2)) %>%
  select(id, time, loop_number, Q3.2)


   id       time loop_number        Q3.2
1   1 2009-01-01           1 -0.20591649
2   2 2009-01-02           1 -0.19811357
3   3 2009-01-03           1  0.35147949
...
29  9 2009-01-09           3 -0.58581232
30 10 2009-01-10           3 -2.33393981

El marco de datos resultante tiene 30 filas, como se esperaba (10 individuos, 3 bucles cada uno). Sin embargo, reunir un segundo conjunto de columnas no funciona correctamente: combina con éxito las dos columnas Q3.2y Q3.3, pero termina con 90 filas en lugar de 30 (todas las combinaciones de 10 individuos, 3 bucles de Q3.2 y 3 bucles de Q3 .3; las combinaciones aumentarán sustancialmente para cada grupo de columnas en los datos reales):

df %>% gather(loop_number, Q3.2, starts_with("Q3.2")) %>% 
  gather(loop_number, Q3.3, starts_with("Q3.3")) %>%
  mutate(loop_number = str_sub(loop_number,-2,-2))


   id       time loop_number        Q3.2        Q3.3
1   1 2009-01-01           1 -0.20591649  1.52718069
2   2 2009-01-02           1 -0.19811357 -0.40380049
3   3 2009-01-03           1  0.35147949 -1.02641801
...
89  9 2009-01-09           3 -0.58581232 -0.13187024
90 10 2009-01-10           3 -2.33393981 -0.48502131

¿Hay alguna forma de utilizar varias llamadas para gather()darle me gusta a esto, combinando pequeños subconjuntos de columnas como este y manteniendo el número correcto de filas?

Andrew avatar Jan 01 '70 08:01 Andrew
Aceptado

Este enfoque me parece bastante natural:

df %>%
  gather(key, value, -id, -time) %>%
  extract(key, c("question", "loop_number"), "(Q.\\..)\\.(.)") %>%
  spread(question, value)

Primero reúna todas las columnas de preguntas, utilícelas extract()para separarlas en questiony loop_numbery luego spread()vuelva a colocar las preguntas en las columnas.

#>    id       time loop_number         Q3.2        Q3.3
#> 1   1 2009-01-01           1  0.142259203 -0.35842736
#> 2   1 2009-01-01           2  0.061034802  0.79354061
#> 3   1 2009-01-01           3 -0.525686204 -0.67456611
#> 4   2 2009-01-02           1 -1.044461185 -1.19662936
#> 5   2 2009-01-02           2  0.393808163  0.42384717
hadley avatar Sep 19 '2014 10:09 hadley

Esto se podría hacer usando reshape. Sin embargo, es posible dplyr.

  colnames(df) <- gsub("\\.(.{2})$", "_\\1", colnames(df))
  colnames(df)[2] <- "Date"
  res <- reshape(df, idvar=c("id", "Date"), varying=3:8, direction="long", sep="_")
  row.names(res) <- 1:nrow(res)
  
   head(res)
  #  id       Date time       Q3.2       Q3.3
  #1  1 2009-01-01    1  1.3709584  0.4554501
  #2  2 2009-01-02    1 -0.5646982  0.7048373
  #3  3 2009-01-03    1  0.3631284  1.0351035
  #4  4 2009-01-04    1  0.6328626 -0.6089264
  #5  5 2009-01-05    1  0.4042683  0.5049551
  #6  6 2009-01-06    1 -0.1061245 -1.7170087

O usandodplyr

  library(tidyr)
  library(dplyr)
  colnames(df) <- gsub("\\.(.{2})$", "_\\1", colnames(df))

  df %>%
     gather(loop_number, "Q3", starts_with("Q3")) %>% 
     separate(loop_number,c("L1", "L2"), sep="_") %>% 
     spread(L1, Q3) %>%
     select(-L2) %>%
     head()
  #  id       time       Q3.2       Q3.3
  #1  1 2009-01-01  1.3709584  0.4554501
  #2  1 2009-01-01  1.3048697  0.2059986
  #3  1 2009-01-01 -0.3066386  0.3219253
  #4  2 2009-01-02 -0.5646982  0.7048373
  #5  2 2009-01-02  2.2866454 -0.3610573
  #6  2 2009-01-02 -1.7813084 -0.7838389

Actualizar

Con la nueva versión de tidyr, podemos utilizarla pivot_longerpara remodelar varias columnas. (Usando los nombres de columna modificados de gsubarriba)

library(dplyr)
library(tidyr)
df %>% 
    pivot_longer(cols = starts_with("Q3"), 
          names_to = c(".value", "Q3"), names_sep = "_") %>% 
    select(-Q3)
# A tibble: 30 x 4
#      id time         Q3.2    Q3.3
#   <int> <date>      <dbl>   <dbl>
# 1     1 2009-01-01  0.974  1.47  
# 2     1 2009-01-01 -0.849 -0.513 
# 3     1 2009-01-01  0.894  0.0442
# 4     2 2009-01-02  2.04  -0.553 
# 5     2 2009-01-02  0.694  0.0972
# 6     2 2009-01-02 -1.11   1.85  
# 7     3 2009-01-03  0.413  0.733 
# 8     3 2009-01-03 -0.896 -0.271 
#9     3 2009-01-03  0.509 -0.0512
#10     4 2009-01-04  1.81   0.668 
# … with 20 more rows

NOTA: Los valores son diferentes porque no hubo una semilla establecida al crear el conjunto de datos de entrada.

akrun avatar Sep 19 '2014 04:09 akrun

Con la reciente actualización de melt.data.table, ahora podemos fusionar varias columnas. Con eso podemos hacer:

require(data.table) ## 1.9.5
melt(setDT(df), id=1:2, measure=patterns("^Q3.2", "^Q3.3"), 
     value.name=c("Q3.2", "Q3.3"), variable.name="loop_number")
 #    id       time loop_number         Q3.2        Q3.3
 # 1:  1 2009-01-01           1 -0.433978480  0.41227209
 # 2:  2 2009-01-02           1 -0.567995351  0.30701144
 # 3:  3 2009-01-03           1 -0.092041353 -0.96024077
 # 4:  4 2009-01-04           1  1.137433487  0.60603396
 # 5:  5 2009-01-05           1 -1.071498263 -0.01655584
 # 6:  6 2009-01-06           1 -0.048376809  0.55889996
 # 7:  7 2009-01-07           1 -0.007312176  0.69872938

Puede obtener la versión de desarrollo desde aquí .

Arun avatar Feb 28 '2015 08:02 Arun

No tiene ninguna relación con "tidyr" y "dplyr", pero aquí hay otra opción a considerar: merged.stackde mi paquete "splitstackshape" , V1.4.0 y superior.

library(splitstackshape)
merged.stack(df, id.vars = c("id", "time"), 
             var.stubs = c("Q3.2.", "Q3.3."),
             sep = "var.stubs")
#     id       time .time_1       Q3.2.       Q3.3.
#  1:  1 2009-01-01      1. -0.62645381  1.35867955
#  2:  1 2009-01-01      2.  1.51178117 -0.16452360
#  3:  1 2009-01-01      3.  0.91897737  0.39810588
#  4:  2 2009-01-02      1.  0.18364332 -0.10278773
#  5:  2 2009-01-02      2.  0.38984324 -0.25336168
#  6:  2 2009-01-02      3.  0.78213630 -0.61202639
#  7:  3 2009-01-03      1. -0.83562861  0.38767161
# <<:::SNIP:::>>
# 24:  8 2009-01-08      3. -1.47075238 -1.04413463
# 25:  9 2009-01-09      1.  0.57578135  1.10002537
# 26:  9 2009-01-09      2.  0.82122120 -0.11234621
# 27:  9 2009-01-09      3. -0.47815006  0.56971963
# 28: 10 2009-01-10      1. -0.30538839  0.76317575
# 29: 10 2009-01-10      2.  0.59390132  0.88110773
# 30: 10 2009-01-10      3.  0.41794156 -0.13505460
#     id       time .time_1       Q3.2.       Q3.3.
A5C1D2H2I1M1N2O1R2T1 avatar Sep 19 '2014 06:09 A5C1D2H2I1M1N2O1R2T1

En caso de que sea como yo y no pueda descubrir cómo usar "expresión regular con grupos de captura" extract, el siguiente código replica la extract(...)línea en la respuesta de Hadleys:

df %>% 
    gather(question_number, value, starts_with("Q3.")) %>%
    mutate(loop_number = str_sub(question_number,-2,-2), question_number = str_sub(question_number,1,4)) %>%
    select(id, time, loop_number, question_number, value) %>% 
    spread(key = question_number, value = value)

El problema aquí es que la recopilación inicial forma una columna de claves que en realidad es una combinación de dos claves. Elegí usar mutateen mi solución original en los comentarios dividir esta columna en dos columnas con información equivalente, una loop_numbercolumna y una question_numbercolumna. spreadLuego se puede utilizar para transformar los datos de formato largo, que son pares de valores clave (question_number, value)en datos de formato amplio.

Alex avatar Jun 28 '2016 06:06 Alex