¿Cómo crear una variable de retraso dentro de cada grupo?
Tengo una tabla de datos:
require(data.table)
set.seed(1)
data <- data.table(time = c(1:3, 1:4),
groups = c(rep(c("b", "a"), c(3, 4))),
value = rnorm(7))
data
# groups time value
# 1: b 1 -0.6264538
# 2: b 2 0.1836433
# 3: b 3 -0.8356286
# 4: a 1 1.5952808
# 5: a 2 0.3295078
# 6: a 3 -0.8204684
# 7: a 4 0.4874291
Quiero calcular una versión retrasada de la columna "valor", dentro de cada nivel de "grupos".
El resultado debería verse así
# groups time value lag.value
# 1 a 1 1.5952808 NA
# 2 a 2 0.3295078 1.5952808
# 3 a 3 -0.8204684 0.3295078
# 4 a 4 0.4874291 -0.8204684
# 5 b 1 -0.6264538 NA
# 6 b 2 0.1836433 -0.6264538
# 7 b 3 -0.8356286 0.1836433
He intentado usar lag
directamente:
data$lag.value <- lag(data$value)
...lo cual claramente no funcionaría.
También he probado:
unlist(tapply(data$value, data$groups, lag))
a1 a2 a3 a4 b1 b2 b3
NA -0.1162932 0.4420753 2.1505440 NA 0.5894583 -0.2890288
Que es casi lo que quiero. Sin embargo, el vector generado está ordenado de manera diferente al orden en la tabla de datos, lo cual es problemático.
¿Cuál es la forma más eficiente de hacer esto en base R, plyr, dplyr y data.table?
Podrías hacer esto dentrodata.table
library(data.table)
data[, lag.value:=c(NA, value[-.N]), by=groups]
data
# time groups value lag.value
#1: 1 a 0.02779005 NA
#2: 2 a 0.88029938 0.02779005
#3: 3 a -1.69514201 0.88029938
#4: 1 b -1.27560288 NA
#5: 2 b -0.65976434 -1.27560288
#6: 3 b -1.37804943 -0.65976434
#7: 4 b 0.12041778 -1.37804943
Para varias columnas:
nm1 <- grep("^value", colnames(data), value=TRUE)
nm2 <- paste("lag", nm1, sep=".")
data[, (nm2):=lapply(.SD, function(x) c(NA, x[-.N])), by=groups, .SDcols=nm1]
data
# time groups value value1 value2 lag.value lag.value1
#1: 1 b -0.6264538 0.7383247 1.12493092 NA NA
#2: 2 b 0.1836433 0.5757814 -0.04493361 -0.6264538 0.7383247
#3: 3 b -0.8356286 -0.3053884 -0.01619026 0.1836433 0.5757814
#4: 1 a 1.5952808 1.5117812 0.94383621 NA NA
#5: 2 a 0.3295078 0.3898432 0.82122120 1.5952808 1.5117812
#6: 3 a -0.8204684 -0.6212406 0.59390132 0.3295078 0.3898432
#7: 4 a 0.4874291 -2.2146999 0.91897737 -0.8204684 -0.6212406
# lag.value2
#1: NA
#2: 1.12493092
#3: -0.04493361
#4: NA
#5: 0.94383621
#6: 0.82122120
#7: 0.59390132
Actualizar
A partir de data.table
versiones >= v1.9.5
, podemos usar shift
con type
as lag
o lead
. Por defecto, el tipo es lag
.
data[, (nm2) := shift(.SD), by=groups, .SDcols=nm1]
# time groups value value1 value2 lag.value lag.value1
#1: 1 b -0.6264538 0.7383247 1.12493092 NA NA
#2: 2 b 0.1836433 0.5757814 -0.04493361 -0.6264538 0.7383247
#3: 3 b -0.8356286 -0.3053884 -0.01619026 0.1836433 0.5757814
#4: 1 a 1.5952808 1.5117812 0.94383621 NA NA
#5: 2 a 0.3295078 0.3898432 0.82122120 1.5952808 1.5117812
#6: 3 a -0.8204684 -0.6212406 0.59390132 0.3295078 0.3898432
#7: 4 a 0.4874291 -2.2146999 0.91897737 -0.8204684 -0.6212406
# lag.value2
#1: NA
#2: 1.12493092
#3: -0.04493361
#4: NA
#5: 0.94383621
#6: 0.82122120
#7: 0.59390132
Si necesita lo contrario, usetype=lead
nm3 <- paste("lead", nm1, sep=".")
Usando el conjunto de datos original
data[, (nm3) := shift(.SD, type='lead'), by = groups, .SDcols=nm1]
# time groups value value1 value2 lead.value lead.value1
#1: 1 b -0.6264538 0.7383247 1.12493092 0.1836433 0.5757814
#2: 2 b 0.1836433 0.5757814 -0.04493361 -0.8356286 -0.3053884
#3: 3 b -0.8356286 -0.3053884 -0.01619026 NA NA
#4: 1 a 1.5952808 1.5117812 0.94383621 0.3295078 0.3898432
#5: 2 a 0.3295078 0.3898432 0.82122120 -0.8204684 -0.6212406
#6: 3 a -0.8204684 -0.6212406 0.59390132 0.4874291 -2.2146999
#7: 4 a 0.4874291 -2.2146999 0.91897737 NA NA
# lead.value2
#1: -0.04493361
#2: -0.01619026
#3: NA
#4: 0.82122120
#5: 0.59390132
#6: 0.91897737
#7: NA
datos
set.seed(1)
data <- data.table(time =c(1:3,1:4),groups = c(rep(c("b","a"),c(3,4))),
value = rnorm(7), value1=rnorm(7), value2=rnorm(7))
Usando el paquete dplyr
:
library(dplyr)
data <-
data %>%
group_by(groups) %>%
mutate(lag.value = dplyr::lag(value, n = 1, default = NA))
da
> data
Source: local data table [7 x 4]
Groups: groups
time groups value lag.value
1 1 a 0.07614866 NA
2 2 a -0.02784712 0.07614866
3 3 a 1.88612245 -0.02784712
4 1 b 0.26526825 NA
5 2 b 1.23820506 0.26526825
6 3 b 0.09276648 1.23820506
7 4 b -0.09253594 0.09276648
Como señaló @BrianD, esto supone implícitamente que el valor ya está ordenado por grupo. De lo contrario, ordénelo por grupo o utilice el order_by
argumento en lag
. También tenga en cuenta que debido a un problema existente con algunas versiones de dplyr, por seguridad, los argumentos y el espacio de nombres deben proporcionarse explícitamente.