¿Por qué 2 * (i * i) es más rápido que 2 * i * i en Java?

Resuelto Stefan asked hace 5 años • 10 respuestas

El siguiente programa Java tarda una media de entre 0,50 y 0,55 segundos en ejecutarse:

public static void main(String[] args) {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * (i * i);
    }
    System.out.println(
        (double) (System.nanoTime() - startTime) / 1000000000 + " s");
    System.out.println("n = " + n);
}

Si lo reemplazo 2 * (i * i)con 2 * i * i, tardará entre 0,60 y 0,65 segundos en ejecutarse. ¿Cómo?

Ejecuté cada versión del programa 15 veces, alternando entre las dos. Aquí están los resultados:

 2*(i*i)  │  2*i*i
──────────┼──────────
0.5183738 │ 0.6246434
0.5298337 │ 0.6049722
0.5308647 │ 0.6603363
0.5133458 │ 0.6243328
0.5003011 │ 0.6541802
0.5366181 │ 0.6312638
0.515149  │ 0.6241105
0.5237389 │ 0.627815
0.5249942 │ 0.6114252
0.5641624 │ 0.6781033
0.538412  │ 0.6393969
0.5466744 │ 0.6608845
0.531159  │ 0.6201077
0.5048032 │ 0.6511559
0.5232789 │ 0.6544526

La ejecución más rápida de 2 * i * itomó más tiempo que la ejecución más lenta de 2 * (i * i). Si tuvieran la misma eficiencia, la probabilidad de que esto sucediera sería menor que 1/2^15 * 100% = 0.00305%.

Stefan avatar Nov 24 '18 03:11 Stefan
Aceptado

Hay una ligera diferencia en el orden del código de bytes.

2 * (i * i):

     iconst_2
     iload0
     iload0
     imul
     imul
     iadd

frente a 2 * i * i:

     iconst_2
     iload0
     imul
     iload0
     imul
     iadd

A primera vista esto no debería suponer ninguna diferencia; en todo caso, la segunda versión es más óptima ya que utiliza una ranura menos.

Por eso necesitamos profundizar en el nivel inferior (JIT) 1 .

Recuerde que JIT tiende a desenrollar pequeños bucles de forma muy agresiva. De hecho observamos un desarrollo de 16x para el 2 * (i * i)caso:

030   B2: # B2 B3 <- B1 B2  Loop: B2-B2 inner main of N18 Freq: 1e+006
030     addl    R11, RBP    # int
033     movl    RBP, R13    # spill
036     addl    RBP, #14    # int
039     imull   RBP, RBP    # int
03c     movl    R9, R13 # spill
03f     addl    R9, #13 # int
043     imull   R9, R9  # int
047     sall    RBP, #1
049     sall    R9, #1
04c     movl    R8, R13 # spill
04f     addl    R8, #15 # int
053     movl    R10, R8 # spill
056     movdl   XMM1, R8    # spill
05b     imull   R10, R8 # int
05f     movl    R8, R13 # spill
062     addl    R8, #12 # int
066     imull   R8, R8  # int
06a     sall    R10, #1
06d     movl    [rsp + #32], R10    # spill
072     sall    R8, #1
075     movl    RBX, R13    # spill
078     addl    RBX, #11    # int
07b     imull   RBX, RBX    # int
07e     movl    RCX, R13    # spill
081     addl    RCX, #10    # int
084     imull   RCX, RCX    # int
087     sall    RBX, #1
089     sall    RCX, #1
08b     movl    RDX, R13    # spill
08e     addl    RDX, #8 # int
091     imull   RDX, RDX    # int
094     movl    RDI, R13    # spill
097     addl    RDI, #7 # int
09a     imull   RDI, RDI    # int
09d     sall    RDX, #1
09f     sall    RDI, #1
0a1     movl    RAX, R13    # spill
0a4     addl    RAX, #6 # int
0a7     imull   RAX, RAX    # int
0aa     movl    RSI, R13    # spill
0ad     addl    RSI, #4 # int
0b0     imull   RSI, RSI    # int
0b3     sall    RAX, #1
0b5     sall    RSI, #1
0b7     movl    R10, R13    # spill
0ba     addl    R10, #2 # int
0be     imull   R10, R10    # int
0c2     movl    R14, R13    # spill
0c5     incl    R14 # int
0c8     imull   R14, R14    # int
0cc     sall    R10, #1
0cf     sall    R14, #1
0d2     addl    R14, R11    # int
0d5     addl    R14, R10    # int
0d8     movl    R10, R13    # spill
0db     addl    R10, #3 # int
0df     imull   R10, R10    # int
0e3     movl    R11, R13    # spill
0e6     addl    R11, #5 # int
0ea     imull   R11, R11    # int
0ee     sall    R10, #1
0f1     addl    R10, R14    # int
0f4     addl    R10, RSI    # int
0f7     sall    R11, #1
0fa     addl    R11, R10    # int
0fd     addl    R11, RAX    # int
100     addl    R11, RDI    # int
103     addl    R11, RDX    # int
106     movl    R10, R13    # spill
109     addl    R10, #9 # int
10d     imull   R10, R10    # int
111     sall    R10, #1
114     addl    R10, R11    # int
117     addl    R10, RCX    # int
11a     addl    R10, RBX    # int
11d     addl    R10, R8 # int
120     addl    R9, R10 # int
123     addl    RBP, R9 # int
126     addl    RBP, [RSP + #32 (32-bit)]   # int
12a     addl    R13, #16    # int
12e     movl    R11, R13    # spill
131     imull   R11, R13    # int
135     sall    R11, #1
138     cmpl    R13, #999999985
13f     jl     B2   # loop end  P=1.000000 C=6554623.000000

Vemos que hay 1 registro que está "derramado" en la pila.

Y para la 2 * i * iversión:

05a   B3: # B2 B4 <- B1 B2  Loop: B3-B2 inner main of N18 Freq: 1e+006
05a     addl    RBX, R11    # int
05d     movl    [rsp + #32], RBX    # spill
061     movl    R11, R8 # spill
064     addl    R11, #15    # int
068     movl    [rsp + #36], R11    # spill
06d     movl    R11, R8 # spill
070     addl    R11, #14    # int
074     movl    R10, R9 # spill
077     addl    R10, #16    # int
07b     movdl   XMM2, R10   # spill
080     movl    RCX, R9 # spill
083     addl    RCX, #14    # int
086     movdl   XMM1, RCX   # spill
08a     movl    R10, R9 # spill
08d     addl    R10, #12    # int
091     movdl   XMM4, R10   # spill
096     movl    RCX, R9 # spill
099     addl    RCX, #10    # int
09c     movdl   XMM6, RCX   # spill
0a0     movl    RBX, R9 # spill
0a3     addl    RBX, #8 # int
0a6     movl    RCX, R9 # spill
0a9     addl    RCX, #6 # int
0ac     movl    RDX, R9 # spill
0af     addl    RDX, #4 # int
0b2     addl    R9, #2  # int
0b6     movl    R10, R14    # spill
0b9     addl    R10, #22    # int
0bd     movdl   XMM3, R10   # spill
0c2     movl    RDI, R14    # spill
0c5     addl    RDI, #20    # int
0c8     movl    RAX, R14    # spill
0cb     addl    RAX, #32    # int
0ce     movl    RSI, R14    # spill
0d1     addl    RSI, #18    # int
0d4     movl    R13, R14    # spill
0d7     addl    R13, #24    # int
0db     movl    R10, R14    # spill
0de     addl    R10, #26    # int
0e2     movl    [rsp + #40], R10    # spill
0e7     movl    RBP, R14    # spill
0ea     addl    RBP, #28    # int
0ed     imull   RBP, R11    # int
0f1     addl    R14, #30    # int
0f5     imull   R14, [RSP + #36 (32-bit)]   # int
0fb     movl    R10, R8 # spill
0fe     addl    R10, #11    # int
102     movdl   R11, XMM3   # spill
107     imull   R11, R10    # int
10b     movl    [rsp + #44], R11    # spill
110     movl    R10, R8 # spill
113     addl    R10, #10    # int
117     imull   RDI, R10    # int
11b     movl    R11, R8 # spill
11e     addl    R11, #8 # int
122     movdl   R10, XMM2   # spill
127     imull   R10, R11    # int
12b     movl    [rsp + #48], R10    # spill
130     movl    R10, R8 # spill
133     addl    R10, #7 # int
137     movdl   R11, XMM1   # spill
13c     imull   R11, R10    # int
140     movl    [rsp + #52], R11    # spill
145     movl    R11, R8 # spill
148     addl    R11, #6 # int
14c     movdl   R10, XMM4   # spill
151     imull   R10, R11    # int
155     movl    [rsp + #56], R10    # spill
15a     movl    R10, R8 # spill
15d     addl    R10, #5 # int
161     movdl   R11, XMM6   # spill
166     imull   R11, R10    # int
16a     movl    [rsp + #60], R11    # spill
16f     movl    R11, R8 # spill
172     addl    R11, #4 # int
176     imull   RBX, R11    # int
17a     movl    R11, R8 # spill
17d     addl    R11, #3 # int
181     imull   RCX, R11    # int
185     movl    R10, R8 # spill
188     addl    R10, #2 # int
18c     imull   RDX, R10    # int
190     movl    R11, R8 # spill
193     incl    R11 # int
196     imull   R9, R11 # int
19a     addl    R9, [RSP + #32 (32-bit)]    # int
19f     addl    R9, RDX # int
1a2     addl    R9, RCX # int
1a5     addl    R9, RBX # int
1a8     addl    R9, [RSP + #60 (32-bit)]    # int
1ad     addl    R9, [RSP + #56 (32-bit)]    # int
1b2     addl    R9, [RSP + #52 (32-bit)]    # int
1b7     addl    R9, [RSP + #48 (32-bit)]    # int
1bc     movl    R10, R8 # spill
1bf     addl    R10, #9 # int
1c3     imull   R10, RSI    # int
1c7     addl    R10, R9 # int
1ca     addl    R10, RDI    # int
1cd     addl    R10, [RSP + #44 (32-bit)]   # int
1d2     movl    R11, R8 # spill
1d5     addl    R11, #12    # int
1d9     imull   R13, R11    # int
1dd     addl    R13, R10    # int
1e0     movl    R10, R8 # spill
1e3     addl    R10, #13    # int
1e7     imull   R10, [RSP + #40 (32-bit)]   # int
1ed     addl    R10, R13    # int
1f0     addl    RBP, R10    # int
1f3     addl    R14, RBP    # int
1f6     movl    R10, R8 # spill
1f9     addl    R10, #16    # int
1fd     cmpl    R10, #999999985
204     jl     B2   # loop end  P=1.000000 C=7419903.000000

Aquí observamos muchos más "derrames" y más accesos a la pila [RSP + ...], debido a que hay más resultados intermedios que deben conservarse.

Por lo tanto, la respuesta a la pregunta es simple: 2 * (i * i)es más rápido 2 * i * iporque el JIT genera un código ensamblador más óptimo para el primer caso.


Pero, por supuesto, es obvio que ni la primera ni la segunda versión son buenas; el bucle realmente podría beneficiarse de la vectorización, ya que cualquier CPU x86-64 tiene al menos soporte SSE2.

Entonces es una cuestión del optimizador; Como suele ocurrir, se desenrolla demasiado agresivamente y se dispara en el pie, perdiendo al mismo tiempo otras oportunidades.

De hecho, las CPU x86-64 modernas dividen las instrucciones en microoperaciones (μops) y con funciones como cambio de nombre de registros, cachés de μop y buffers de bucle, la optimización del bucle requiere mucha más delicadeza que un simple desenrollado para un rendimiento óptimo. Según la guía de optimización de Agner Fog :

La ganancia de rendimiento debida a la caché µop puede ser bastante considerable si la longitud media de las instrucciones es superior a 4 bytes. Se pueden considerar los siguientes métodos para optimizar el uso de la caché µop:

  • Asegúrese de que los bucles críticos sean lo suficientemente pequeños como para caber en la caché µop.
  • Alinee las entradas de bucle y funciones más críticas en 32.
  • Evite desenrollar bucles innecesarios.
  • Evite instrucciones que tengan tiempo de carga extra
    . . .

Con respecto a esos tiempos de carga, incluso el acceso L1D más rápido cuesta 4 ciclos , un registro adicional y µop, por lo que sí, incluso unos pocos accesos a la memoria afectarán el rendimiento en bucles cerrados.

Pero volvamos a la oportunidad de la vectorización: para ver qué tan rápido puede ser, podemos compilar una aplicación C similar con GCC , que la vectoriza directamente (se muestra AVX2, SSE2 es similar) 2 :

  vmovdqa ymm0, YMMWORD PTR .LC0[rip]
  vmovdqa ymm3, YMMWORD PTR .LC1[rip]
  xor eax, eax
  vpxor xmm2, xmm2, xmm2
.L2:
  vpmulld ymm1, ymm0, ymm0
  inc eax
  vpaddd ymm0, ymm0, ymm3
  vpslld ymm1, ymm1, 1
  vpaddd ymm2, ymm2, ymm1
  cmp eax, 125000000      ; 8 calculations per iteration
  jne .L2
  vmovdqa xmm0, xmm2
  vextracti128 xmm2, ymm2, 1
  vpaddd xmm2, xmm0, xmm2
  vpsrldq xmm0, xmm2, 8
  vpaddd xmm0, xmm2, xmm0
  vpsrldq xmm1, xmm0, 4
  vpaddd xmm0, xmm0, xmm1
  vmovd eax, xmm0
  vzeroupper

Con tiempos de ejecución:

  • SSE: 0,24 s, o 2 veces más rápido.
  • AVX: 0,15 s, o 3 veces más rápido.
  • AVX2: 0,08 s, o 5 veces más rápido.

1 Para obtener la salida del ensamblado generado por JIT, obtenga una JVM de depuración y ejecútela con-XX:+PrintOptoAssembly

2 La versión C se compila con el -fwrapvindicador, que permite a GCC tratar el desbordamiento de enteros con signo como un complemento de dos.

rustyx avatar Nov 23 '2018 22:11 rustyx

(Nota del editor: esta respuesta se contradice con la evidencia obtenida al observar el conjunto, como lo muestra otra respuesta. Esta fue una suposición respaldada por algunos experimentos, pero resultó no ser correcta).


Cuando la multiplicación es 2 * (i * i), la JVM puede factorizar la multiplicación por 2del bucle, lo que da como resultado este código equivalente pero más eficiente:

int n = 0;
for (int i = 0; i < 1000000000; i++) {
    n += i * i;
}
n *= 2;

pero cuando la multiplicación es (2 * i) * i, la JVM no la optimiza ya que la multiplicación por una constante ya no está justo antes de la n +=suma.

Aquí hay algunas razones por las que creo que este es el caso:

  • Agregar una if (n == 0) n = 1declaración al comienzo del ciclo da como resultado que ambas versiones sean igual de eficientes, ya que factorizar la multiplicación ya no garantiza que el resultado será el mismo.
  • La versión optimizada (descontando la multiplicación por 2) es exactamente tan rápida como la 2 * (i * i)versión

Aquí está el código de prueba que utilicé para sacar estas conclusiones:

public static void main(String[] args) {
    long fastVersion = 0;
    long slowVersion = 0;
    long optimizedVersion = 0;
    long modifiedFastVersion = 0;
    long modifiedSlowVersion = 0;

    for (int i = 0; i < 10; i++) {
        fastVersion += fastVersion();
        slowVersion += slowVersion();
        optimizedVersion += optimizedVersion();
        modifiedFastVersion += modifiedFastVersion();
        modifiedSlowVersion += modifiedSlowVersion();
    }

    System.out.println("Fast version: " + (double) fastVersion / 1000000000 + " s");
    System.out.println("Slow version: " + (double) slowVersion / 1000000000 + " s");
    System.out.println("Optimized version: " + (double) optimizedVersion / 1000000000 + " s");
    System.out.println("Modified fast version: " + (double) modifiedFastVersion / 1000000000 + " s");
    System.out.println("Modified slow version: " + (double) modifiedSlowVersion / 1000000000 + " s");
}

private static long fastVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * (i * i);
    }
    return System.nanoTime() - startTime;
}

private static long slowVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * i * i;
    }
    return System.nanoTime() - startTime;
}

private static long optimizedVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += i * i;
    }
    n *= 2;
    return System.nanoTime() - startTime;
}

private static long modifiedFastVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        if (n == 0) n = 1;
        n += 2 * (i * i);
    }
    return System.nanoTime() - startTime;
}

private static long modifiedSlowVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        if (n == 0) n = 1;
        n += 2 * i * i;
    }
    return System.nanoTime() - startTime;
}

Y aquí están los resultados:

Fast version: 5.7274411 s
Slow version: 7.6190804 s
Optimized version: 5.1348007 s
Modified fast version: 7.1492705 s
Modified slow version: 7.2952668 s
 avatar Nov 23 '2018 21:11

Códigos de bytes: https://cs.nyu.edu/courses/fall00/V22.0201-001/jvm2.html Visor de códigos de bytes: https://github.com/Konloch/bytecode-viewer

En mi JDK (Windows 10 de 64 bits, 1.8.0_65-b17) puedo reproducir y explicar:

public static void main(String[] args) {
    int repeat = 10;
    long A = 0;
    long B = 0;
    for (int i = 0; i < repeat; i++) {
        A += test();
        B += testB();
    }

    System.out.println(A / repeat + " ms");
    System.out.println(B / repeat + " ms");
}


private static long test() {
    int n = 0;
    for (int i = 0; i < 1000; i++) {
        n += multi(i);
    }
    long startTime = System.currentTimeMillis();
    for (int i = 0; i < 1000000000; i++) {
        n += multi(i);
    }
    long ms = (System.currentTimeMillis() - startTime);
    System.out.println(ms + " ms A " + n);
    return ms;
}


private static long testB() {
    int n = 0;
    for (int i = 0; i < 1000; i++) {
        n += multiB(i);
    }
    long startTime = System.currentTimeMillis();
    for (int i = 0; i < 1000000000; i++) {
        n += multiB(i);
    }
    long ms = (System.currentTimeMillis() - startTime);
    System.out.println(ms + " ms B " + n);
    return ms;
}

private static int multiB(int i) {
    return 2 * (i * i);
}

private static int multi(int i) {
    return 2 * i * i;
}

Producción:

...
405 ms A 785527736
327 ms B 785527736
404 ms A 785527736
329 ms B 785527736
404 ms A 785527736
328 ms B 785527736
404 ms A 785527736
328 ms B 785527736
410 ms
333 ms

¿Entonces por qué? El código de bytes es este:

 private static multiB(int arg0) { // 2 * (i * i)
     <localVar:index=0, name=i , desc=I, sig=null, start=L1, end=L2>

     L1 {
         iconst_2
         iload0
         iload0
         imul
         imul
         ireturn
     }
     L2 {
     }
 }

 private static multi(int arg0) { // 2 * i * i
     <localVar:index=0, name=i , desc=I, sig=null, start=L1, end=L2>

     L1 {
         iconst_2
         iload0
         imul
         iload0
         imul
         ireturn
     }
     L2 {
     }
 }

La diferencia es: Con corchetes ( 2 * (i * i)):

  • empujar pila constante
  • empujar local en la pila
  • empujar local en la pila
  • multiplicar la parte superior de la pila
  • multiplicar la parte superior de la pila

Sin corchetes ( 2 * i * i):

  • empujar pila constante
  • empujar local en la pila
  • multiplicar la parte superior de la pila
  • empujar local en la pila
  • multiplicar la parte superior de la pila

Cargar todo en la pila y luego volver a trabajar es más rápido que cambiar entre colocar la pila y operar en ella.

DSchmidt avatar Nov 23 '2018 21:11 DSchmidt

Kasperd preguntó en un comentario de la respuesta aceptada:

Los ejemplos de Java y C utilizan nombres de registros bastante diferentes. ¿Ambos ejemplos utilizan AMD64 ISA?

xor edx, edx
xor eax, eax
.L2:
mov ecx, edx
imul ecx, edx
add edx, 1
lea eax, [rax+rcx*2]
cmp edx, 1000000000
jne .L2

No tengo suficiente reputación para responder esto en los comentarios, pero son la misma ISA. Vale la pena señalar que la versión GCC usa lógica entera de 32 bits y la versión compilada JVM usa lógica entera de 64 bits internamente.

R8 a R15 son solo nuevos registros X86_64 . EAX a EDX son las partes inferiores de los registros de propósito general de RAX a RDX. La parte importante de la respuesta es que la versión GCC no se desenrolla. Simplemente ejecuta una ronda del bucle por bucle de código de máquina real. Mientras que la versión JVM tiene 16 rondas del bucle en un bucle físico (según la respuesta de Rustyx, no reinterpreté el ensamblaje). Esta es una de las razones por las que se utilizan más registros, ya que el cuerpo del bucle es en realidad 16 veces más largo.

Puzzled avatar Nov 25 '2018 18:11 Puzzled

Si bien no está directamente relacionado con el entorno de la pregunta, solo por curiosidad, hice la misma prueba en .NET Core 2.1, x64, modo de lanzamiento.

Aquí está el interesante resultado, que confirma fenómenos similares (al revés) que ocurren en el lado oscuro de la fuerza. Código:

static void Main(string[] args)
{
    Stopwatch watch = new Stopwatch();

    Console.WriteLine("2 * (i * i)");

    for (int a = 0; a < 10; a++)
    {
        int n = 0;

        watch.Restart();

        for (int i = 0; i < 1000000000; i++)
        {
            n += 2 * (i * i);
        }

        watch.Stop();

        Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds} ms");
    }

    Console.WriteLine();
    Console.WriteLine("2 * i * i");

    for (int a = 0; a < 10; a++)
    {
        int n = 0;

        watch.Restart();

        for (int i = 0; i < 1000000000; i++)
        {
            n += 2 * i * i;
        }

        watch.Stop();

        Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds}ms");
    }
}

Resultado:

2 * (yo * yo)

  • resultado: 119860736, 438 ms
  • resultado: 119860736, 433 ms
  • resultado: 119860736, 437 ms
  • resultado: 119860736, 435 ms
  • resultado: 119860736, 436 ms
  • resultado: 119860736, 435 ms
  • resultado: 119860736, 435 ms
  • resultado: 119860736, 439 ms
  • resultado: 119860736, 436 ms
  • resultado: 119860736, 437 ms

2 * yo * yo

  • resultado: 119860736, 417 ms
  • resultado: 119860736, 417 ms
  • resultado: 119860736, 417 ms
  • resultado: 119860736, 418 ms
  • resultado: 119860736, 418 ms
  • resultado: 119860736, 417 ms
  • resultado: 119860736, 418 ms
  • resultado: 119860736, 416 ms
  • resultado: 119860736, 417 ms
  • resultado: 119860736, 418 ms
Ünsal Ersöz avatar Nov 28 '2018 08:11 Ünsal Ersöz