Aplanar diccionarios anidados, comprimir claves
Supongamos que tiene un diccionario como:
{'a': 1,
'c': {'a': 2,
'b': {'x': 5,
'y' : 10}},
'd': [1, 2, 3]}
¿Cómo harías para aplanar eso en algo como:
{'a': 1,
'c_a': 2,
'c_b_x': 5,
'c_b_y': 10,
'd': [1, 2, 3]}
Aceptado
Básicamente, de la misma manera que aplanarías una lista anidada, solo tienes que hacer el trabajo adicional para iterar el dict por clave/valor, crear nuevas claves para tu nuevo diccionario y crear el diccionario en el paso final.
from collections.abc import MutableMapping
def flatten(dictionary, parent_key='', separator='_'):
items = []
for key, value in dictionary.items():
new_key = parent_key + separator + key if parent_key else key
if isinstance(value, MutableMapping):
items.extend(flatten(value, new_key, separator=separator).items())
else:
items.append((new_key, value))
return dict(items)
>>> flatten({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]})
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}
O si ya estás usando pandas, puedes hacerlo json_normalize()
así:
import pandas as pd
d = {'a': 1,
'c': {'a': 2, 'b': {'x': 5, 'y' : 10}},
'd': [1, 2, 3]}
df = pd.json_normalize(d, sep='_')
print(df.to_dict(orient='records')[0])
Producción:
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'c_b_y': 10, 'd': [1, 2, 3]}