¿Cómo codificar en caliente desde una columna de pandas que contiene una lista?

Resuelto Melsauce asked hace 7 años • 6 respuestas

Me gustaría dividir una columna de pandas que consta de una lista de elementos en tantas columnas como elementos únicos, es decir, one-hot-encodeellos (con el valor 1representando un elemento determinado existente en una fila y 0en caso de ausencia).

Por ejemplo, tomando el marco de datos df

Col1   Col2         Col3
 C      33     [Apple, Orange, Banana]
 A      2.5    [Apple, Grape]
 B      42     [Banana] 

Me gustaría convertir esto a:

df

Col1   Col2   Apple   Orange   Banana   Grape
 C      33     1        1        1       0
 A      2.5    1        0        0       1
 B      42     0        0        1       0

¿Cómo puedo usar pandas/sklearn para lograr esto?

Melsauce avatar Jul 26 '17 02:07 Melsauce
Aceptado

También podemos usar sklearn.preprocessing.MultiLabelBinarizer :

A menudo queremos utilizar DataFrame escaso para los datos del mundo real para ahorrar mucha RAM.

Solución escasa (para Pandas v0.25.0+)

from sklearn.preprocessing import MultiLabelBinarizer

mlb = MultiLabelBinarizer(sparse_output=True)

df = df.join(
            pd.DataFrame.sparse.from_spmatrix(
                mlb.fit_transform(df.pop('Col3')),
                index=df.index,
                columns=mlb.classes_))

resultado:

In [38]: df
Out[38]:
  Col1  Col2  Apple  Banana  Grape  Orange
0    C  33.0      1       1      0       1
1    A   2.5      1       0      1       0
2    B  42.0      0       1      0       0

In [39]: df.dtypes
Out[39]:
Col1                object
Col2               float64
Apple     Sparse[int32, 0]
Banana    Sparse[int32, 0]
Grape     Sparse[int32, 0]
Orange    Sparse[int32, 0]
dtype: object

In [40]: df.memory_usage()
Out[40]:
Index     128
Col1       24
Col2       24
Apple      16    #  <--- NOTE!
Banana     16    #  <--- NOTE!
Grape       8    #  <--- NOTE!
Orange      8    #  <--- NOTE!
dtype: int64

solución densa

mlb = MultiLabelBinarizer()
df = df.join(pd.DataFrame(mlb.fit_transform(df.pop('Col3')),
                          columns=mlb.classes_,
                          index=df.index))

Resultado:

In [77]: df
Out[77]:
  Col1  Col2  Apple  Banana  Grape  Orange
0    C  33.0      1       1      0       1
1    A   2.5      1       0      1       0
2    B  42.0      0       1      0       0

MaxU - stand with Ukraine avatar Jul 25 '2017 20:07 MaxU - stand with Ukraine

Opción 1
Respuesta corta
pir_slow

df.drop('Col3', 1).join(df.Col3.str.join('|').str.get_dummies())

  Col1  Col2  Apple  Banana  Grape  Orange
0    C  33.0      1       1      0       1
1    A   2.5      1       0      1       0
2    B  42.0      0       1      0       0

Opción 2
Respuesta Rápida
pir_fast

v = df.Col3.values
l = [len(x) for x in v.tolist()]
f, u = pd.factorize(np.concatenate(v))
n, m = len(v), u.size
i = np.arange(n).repeat(l)

dummies = pd.DataFrame(
    np.bincount(i * m + f, minlength=n * m).reshape(n, m),
    df.index, u
)

df.drop('Col3', 1).join(dummies)

  Col1  Col2  Apple  Orange  Banana  Grape
0    C  33.0      1       1       1      0
1    A   2.5      1       0       0      1
2    B  42.0      0       0       1      0

Opción 3
pir_alt1

df.drop('Col3', 1).join(
    pd.get_dummies(
        pd.DataFrame(df.Col3.tolist(), df.index).stack()
    ).astype(int).groupby(level=0).sum()
)

  Col1  Col2  Apple  Orange  Banana  Grape
0    C  33.0      1       1       1      0
1    A   2.5      1       0       0      1
2    B  42.0      0       0       1      0

Código de resultados de sincronización a continuación

ingrese la descripción de la imagen aquí


def maxu(df):
    mlb = MultiLabelBinarizer()
    d = pd.DataFrame(
        mlb.fit_transform(df.Col3.values)
        , df.index, mlb.classes_
    )
    return df.drop('Col3', 1).join(d)


def bos(df):
    return df.drop('Col3', 1).assign(**pd.get_dummies(df.Col3.apply(lambda x:pd.Series(x)).stack().reset_index(level=1,drop=True)).sum(level=0))

def psi(df):
    return pd.concat([
        df.drop("Col3", 1),
        df.Col3.apply(lambda x: pd.Series(1, x)).fillna(0)
    ], axis=1)

def alex(df):
    return df[['Col1', 'Col2']].assign(**{fruit: [1 if fruit in cell else 0 for cell in df.Col3] 
                                       for fruit in set(fruit for fruits in df.Col3 
                                                        for fruit in fruits)})

def pir_slow(df):
    return df.drop('Col3', 1).join(df.Col3.str.join('|').str.get_dummies())

def pir_alt1(df):
    return df.drop('Col3', 1).join(pd.get_dummies(pd.DataFrame(df.Col3.tolist()).stack()).astype(int).sum(level=0))

def pir_fast(df):
    v = df.Col3.values
    l = [len(x) for x in v.tolist()]
    f, u = pd.factorize(np.concatenate(v))
    n, m = len(v), u.size
    i = np.arange(n).repeat(l)

    dummies = pd.DataFrame(
        np.bincount(i * m + f, minlength=n * m).reshape(n, m),
        df.index, u
    )

    return df.drop('Col3', 1).join(dummies)

results = pd.DataFrame(
    index=(1, 3, 10, 30, 100, 300, 1000, 3000),
    columns='maxu bos psi alex pir_slow pir_fast pir_alt1'.split()
)

for i in results.index:
    d = pd.concat([df] * i, ignore_index=True)
    for j in results.columns:
        stmt = '{}(d)'.format(j)
        setp = 'from __main__ import d, {}'.format(j)
        results.set_value(i, j, timeit(stmt, setp, number=10))
piRSquared avatar Jul 25 '2017 21:07 piRSquared